

Einstein-Podolsky-Rosen steering provides the advantage in entanglement-assisted subchannel discrimination with one-way measurements

Marco Piani

Joint work with John Watrous, arXiv:1406.0530, PRL to appear

QIP 2015, Sydney

"All entangled states are special, but some are more special than others"

George Qrwell, Entanglement farm

Goals:

- To understand quantum correlations
- To facilitate their exploitation

How:

Operational characterization considering their usefulness in the discrimination of physical processes

final state

We will consider channel with subchannels (a.k.a. instrument)

 Λ_a : subchannel, i.e. completely positive trace-non-increasing linear map

Includes standard channel discrimination

$$\hat{\Lambda} = \sum_{a} \Lambda_a \qquad \Lambda_a = p_a \hat{\Lambda}_a$$

E.g.:
$$\hat{\Lambda} = \frac{1}{2}\hat{\Lambda}_0 + \frac{1}{2}\hat{\Lambda}_1$$

but is more general...

EXAMPLE:

"Branches" of the amplitude damping channel

$$\hat{\Lambda} = \Lambda_0 + \Lambda_1$$

$$\Lambda_i[\hat{\rho}] = K_i \hat{\rho} K_i^{\dagger}$$

$$K_0 = |0\rangle\langle 0| + \sqrt{1 - \gamma}|1\rangle\langle 1|$$

$$K_1 = \sqrt{\gamma} |0\rangle \langle 1|$$

Task: minimum-error subchannel discrimination

initial state

transformation/ evolution

Ĉ

 $\{\Lambda_a\}_a$

(instrument)

$$p(b, a|\rho) = \text{Tr}(Q_b \Lambda_a[\rho])$$

initial state

transformation/ evolution

measurement

 $\hat{\rho}$

 $\{\Lambda_a\}_a$

 ${Q_b}_b$

(instrument)

(POVM)

Want to optimize the probability of guessing correctly

$$\begin{split} p_{\mathrm{corr}}(\{\Lambda_a\}_a,\{Q_b\}_b,\hat{\rho}) &= \sum_{a,b} p(b,a|\hat{\rho})\delta_{a,b} \\ &= \sum_a \mathrm{Tr}(Q_a\Lambda_a[\hat{\rho}]) \\ &\stackrel{\mathrm{same}}{\underset{\mathrm{index}}{\bigcap}} \end{split}$$

Optimal probability of guessing with given input

$$p_{\text{corr}}(\{\Lambda_a\}_a, \rho) := \max_{\{Q_b\}_b} p_{\text{corr}}(\{\Lambda_a\}_a, \{Q_b\}_b, \rho)$$

Optimal probability of guessing with optimal input

No Entanglement

No Entanglement
$$p_{\mathrm{corr}}^{\mathrm{NE}}(\{\Lambda_a\}_a) := \max_{
ho} p_{\mathrm{corr}}(\{\Lambda_a\}_a,
ho)$$

probe (a.k.a. Bob, a.k.a. Mario)

ancilla (a.k.a. **A**lice, a.k.a. Luigi)

entangled probe and ancilla

$$\hat{\rho}_{AB}^{\mathrm{ent}} \neq \sum_{\lambda} p(\lambda)\hat{\sigma}_{A}(\lambda) \otimes \hat{\sigma}_{B}(\lambda)$$

 $\hat{\sigma}_{AB}^{ ext{sep}}$ separable/unentangled

Optimal probability of guessing with optimal input, including the possibility of using entanglement

Entanglement
$$p_{\mathrm{corr}}^{\mathrm{E}}(\{\Lambda_a\}_a) := \max_{\mathrm{ancilla}\ A} p_{\mathrm{corr}}^{\mathrm{NE}}(\{\Lambda_a \otimes \mathrm{id}_A\}_a)$$
 ancilla does not evolve

$$p_{\text{corr}}^{\text{E}}(\{\Lambda_a\}_a) > p_{\text{corr}}^{\text{NE}}(\{\Lambda_a\}_a)$$

[Kitaev, Russ. Math. Surv. '97; Paulsen, Completely bounded maps and opeator algebras, '02; many others...]

$$p_{\text{corr}}^{\text{E}}(\{\Lambda_a\}_a) > p_{\text{corr}}^{\text{NE}}(\{\Lambda_a\}_a)$$

[Kitaev, Russ. Math. Surv. '97; Paulsen, Completely bounded maps and opeator algebras, '02; many others...]

REMARK:

The classical correlations of *unentangled states are* useless!

MOREOVER

For **any** probe-ancilla entangled state, there is a choice of evolutions that are better distinguished using that entangled state

$$p_{\text{corr}}(\{\Lambda_a(\hat{\rho}_{AB}^{\text{ent}})\}_a, \hat{\rho}_{AB}^{\text{ent}}) > p_{\text{corr}}^{\text{NE}}(\{\Lambda_a(\hat{\rho}_{AB}^{\text{ent}})\}_a)$$

[P. and Watrous, PRL '09]

MOREOVER

For **any** probe-ancilla entangled state, there is a choice of evolutions that are better distinguished using that entangled state

Every entangled state is useful for (sub)channel discrimination

resource!

RESOURCE!!!

[Matthews, P. and Watrous, PRA '10]

Does every entangled state stay useful in this scenario?

MAIN RESULTS

If measurements are restricted to one-way LOCC, only steerable states can remain useful

Steerable?

If measurements are restricted to one-way LOCC,

all steerable states do remain useful!

The usefulness of a probe-ancilla state in one-way-LOCC subchannel discrimination quantifies its steerability

Einstein Podolsky Rosen

[see above, Phys. Rev. '35]

Schroedinger

[Schroedinger, Proc. Camb. Phil. Soc. '35, '36]

STEERING

Alice controls the **conditional** states of Bob through her choice of measurements

EXAMPLE OF STEERING

$$\hat{\rho}^{AB} = |\psi^{-}\rangle\langle\psi^{-}|^{AB} \qquad |\psi^{-}\rangle = \frac{|0\rangle|1\rangle - |1\rangle|0\rangle}{\sqrt{2}}$$

$$M_{a|0}^A \in \{|0\rangle\langle 0|, |1\rangle\langle 1|\}$$

$$\rho_{a|0}^B \in \left\{ \frac{1}{2} |1\rangle\langle 1|, \frac{1}{2} |0\rangle\langle 0| \right\}$$

$$M_{a|1}^A \in \{|+\rangle\langle+|,|-\rangle\langle-|\}$$

assemblage

When is steering *really* quantum? ("spooky action at a distance")

Can we or can we not imagine that B was in some pre-existing local hidden state?

Local hidden state model

Local hidden state model

label of hidden state

$$\{p(\lambda), \hat{\sigma}^B(\lambda)\}$$

probability \mathcal{J} distribution on hidden states

Un**S**teerable (assemblage)

$$\rho_{a|x}^{B,\mathrm{US}} = \sum_{\lambda} p(a|x,\lambda)p(\lambda)\hat{\sigma}(\lambda)$$

$$= \sum D(a|x,\lambda)p'(\lambda)\hat{\sigma}'(\lambda)$$

 $\lambda: \det .$

deterministic strategy/response

[Wiseman, Jones, Doherty, PRL '07]

Not unsteerable = steerable

A bipartite state is steerable if it can generate steerable assemblages via local measurements; otherwise unsteerable

All unentangled states are unsteerable, and all unsteerable assemblages can be seen as originating from some unentangled state:

steering entanglement

Also some entangled states are unsteerable!!!

steering entanglement

A hierarchy for bipartite correlations

The border we characterize operationally

$$\{N_x^B\}_x$$

$$\hat{
ho}^{AB}$$

$$p_{\mathrm{corr}}^{B \to A}(\{\Lambda_a\}, \rho_{AB}) \stackrel{\cdot}{>} p_{\mathrm{corr}}^{\mathrm{NE}}(\{\Lambda_a\})$$

$$\{M_{b|x}^A\}_{b,x}$$

In order to have

$$p_{\text{corr}}^{B \to A}(\{\Lambda_a\}, \rho_{AB}) > p_{\text{corr}}^{\text{NE}}(\{\Lambda_a\})$$

it must be that $\,\{M^A_{b|x}\}_{b,x}\,$ creates steerable assemblage

(otherwise some separable state would have performed as well, and no better than w/o correlations)

Only steerable states can be useful under the one-way LOCC assumption for measurements
[also entangled states are useless, if unsteerable!!!]

We prove that all steerable states do stay useful!!!

If the state is steerable, consider any choice of $\{M_{b|x}^A\}_{b,x}$ that generates a steerable assemblage $\{\rho_{a|x}^B\}_{a,x}$

The robustenss of steering of such an assemblage is:

$$R(\{\rho_{a|x}\})$$
:= $\min \left\{ t \ge 0 \, \middle| \, \left\{ \frac{\rho_{a|x} + t \, \tau_{a|x}}{1+t} \right\}_{a,x} \text{ unsteerable,} \right.$

$$\left. \left\{ \tau_{a|x} \right\} \text{ an assemblage} \right\}$$

We define the steering robustness of the state as

$$R_{\text{steer}}^{A \to B}(\rho_{AB}) := \sup_{\{M_{a|x}^A\}_{a,x}} R(\{\rho_{a|x}^B\}_{a,x})$$

We prove

$$\sup_{\{\Lambda_a\}_a} \frac{p_{\text{corr}}^{B \to A}(\{\Lambda_a\}_a, \rho_{AB})}{p_{\text{corr}}^{\text{NE}}(\{\Lambda_a\}_a)} = R_{\text{steer}}^{A \to B}(\rho_{AB}) + 1$$

The direction

$$\sup_{\{\Lambda_a\}_a} \frac{p_{\text{corr}}^{B \to A}(\{\Lambda_a\}_a, \rho_{AB})}{p_{\text{corr}}^{\text{NE}}(\{\Lambda_a\}_a)} \le R_{\text{steer}}^{A \to B}(\rho_{AB}) + 1$$

is easily proven just by making use of definitions.

That the upper bound can be achieved is proven by constructing suitable subchannel discrimination problems

Finding $R(\{\rho_{a|x}\})$ corresponds to a **semidefinite programming (SDP)** optimization problem (whose dual is)

maximize
$$\sum_{a,x} \operatorname{Tr}(F_{a|x}\rho_{a|x}) - 1$$
 subject to
$$\sum_{a,x} D(a|x,\lambda) F_{a|x} \leq \mathbb{1} \quad \forall \lambda$$

$$F_{a|x} \geq 0 \quad \forall a,x$$

 $D(a|x,\lambda)$: deterministic response

 λ : identifier of deterministic response

Using the information provided by the SDP optimization problem we construct suitable subchannels $\{\Lambda_a\}_a$

Choose them to be quantum-to-classical

$$\Lambda_a[\tau] \propto \sum_x {\rm Tr}(F_{a|x}\tau)|x\rangle\langle x|$$
 use normalization to make them **sub**channels of an instrument

 Take care of trace preservation by introducing suitable "dummy" subchannels Having used the $\ F_{a|x}$ s that give $R(\{\rho_{a|x}\})$, with our construction we find

$$\frac{p_{\mathrm{corr}}^{B\to A}(\{\Lambda_a\}_a,\rho_{AB})}{p_{\mathrm{corr}}^{\mathrm{NE}}(\{\Lambda_a\}_a)} \geq \frac{R(\{\rho_a|_x\})+1}{1+\frac{2}{\alpha N}}$$

$$\underset{\text{normalization factor dummy}}{\text{number of dummy}}$$

$$\underset{\text{(independent of N)}}{\text{(independent of N)}}$$

Considering $N o \infty$ we prove the claim.

REMARK

Our SDP approach was also inspired by [Skrzypczyk, Navascués, and Cavalcanti, PRL '14]

In their case they use semidefinite programming to compute the so-called *steering weight*

Steering robustness

Steering weight

Conclusions

"All entangled states are special [...]"

All entangled states are useful for (sub)channel discrimination

"[...] but some are more special than others"

Only steerable states can be, and are useful for subchannel discimination under the constraint that the measurements are one-way LOCC

Conclusions

We have introduced the **robustness of steering**:

- it has at least two operational interpretations:
 - resilience (of steering) to noise
 - advantage in subchannel discrimination
- computable via SDP for a given assemblage
- it provides semi-device-independent bounds
 to the robustness of entanglement [Vidal and Tarrach, PRA '99]
- it scales with the amount of entanglement
- it respects sensible criteria to be considered a resource quantifier [Gallego and Aolita, arXiv:1409.5804]

Some open questions

- Closed formula for the robustness of steering for pure states/maximally entangled states
- Can steering be characterized by considering channel discrimination, rather than subchannel discimination?
- Are all entangled states useful for (sub)channel discrimination under general LOCC (Vs one-way LOCC)?
- Can we also characterize non-locality --- besides entanglement and steering --- via (sub)channel discrimination tasks?

THANK

YOU!!!

arXiv:1406.0530, PRL to appear

