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“All entangled states are special,
but some are more special than others”

George Qrwell, Entanglement farm
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Goals:

* To understand quantum correlations
 To facilitate their exploitation

How:

Operational characterization
considering their usefulness in the discrimination
of physical processes
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initial state physical process /
transformation

final state



We will consider channel with
subchannels (a.k.a. instrument)

Aa : subchannel, i.e. completely positive
trace-non-increasing linear map




Includes standard channel discrimination

but is more general...



EXAMPLE:

“Branches” of the
amplitude damping channel



Task:
minimum-error subchannel discrimination
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initial state transformation/ measurement
evolution

:5 {Aa}a {Qb}b

(instrument) (POVM)



Want to optimize the
probability of guessing correctly

pcorr({Aa}aa {Qb}b7 15) — Zp(b7 a‘ﬁ)(sa,b
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Optimal probability of guessing with given input

pcorr({Aa}aa /0) ‘= {Ig?icb pcorr({Aa}aa {Qb}ba 10)

Optimal probability of guessing with optimal input
— No Entanglement

R(Aaba) 1= maxpeone({Aa} s )



probe ancilla
(a.k.a. Bob, (a.k.a. Alice,
a.k.a. Mario) a.k.a. Luigi)
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Optimal probability of guessing with optimal input,
including the possibility of using entanglement

— Entanglement

(). ((Aada) = max pNB({Ae @ida}a)

ancilla A /\

ancilla does
not evolve



There are evolutions that are better distinguished by
the use of entanglement

p(]?orr({Aa}a) >pcorr({A } )

[Kitaev, Russ. Math. Surv. '97; Paulsen, Completely bounded maps and
opeator algebras, ‘02; many others...]



There are evolutions that are better distinguished by
the use of entanglement

p(]?orr({Aa}a) >pcorr({A } )

[Kitaev, Russ. Math. Surv. '97; Paulsen, Completely bounded maps and
opeator algebras, ‘02; many others...]

REMARK:
The classical correlations of unentangled states are
useless!



There are evolutions that are better distinguished by
the use of entanglement

MOREOVER

For any probe-ancilla entangled state, there is a choice
of evolutions that are better distinguished using that
entangled state

Pcorr ({Aa (ﬁi&né ) }aa ,(3?4“1%) > pi?r ({Aa (ﬁ?ﬂ% ) }a)

[P. and Watrous, PRL ‘09]



There are evolutions that are better distinguished by
the use of entanglement

MOREOVER

For any probe-ancilla entangled state, there is a choice
of evolutions that are better distinguished using that
entangled state

Every entangled state is useful for (sub)channel
discrimination



resource!




the only resource? resource’?




RESOURCE!!!

[Matthews, P. and Watrous, PRA "10]












MAIN RESULTS

If measurements are restricted to one-way LOCC, only
steerable states can remain useful

If measurements are restricted to one-way LOCC,
all steerable states do remain useful!

~ Steerable? =

The usefulness of a probe-ancilla state in
one-way-LOCC subchannel discrimination
quantifies its steerability



Einstein Podolsky Rosen

[see above, Phys. Rev. ‘35]

Schroedinger
[Schroedinger, Proc. Camb. Phil. Soc. '35, ’36]



STEERING

Alice controls the conditional states of Bob through her
choice of measurements

POVM
element

B A AB
Pala :TrA(Ma|xp )
outcome of \ choice of
measurement measurement



EXAMPLE OF STEERING
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When is steering really quantum? R
(“spooky action at a distance”) *

Can we or can we not imagine that
B was in some pre-existing
local hidden state?



Local hidden state model

label of hidden state

/
{p(N), 67 (N)}
probability j A\

distribution on hidden state

hidden states conditional

/ probability

Paje = D plalz, )p(A)&(N)
A

[Wiseman, Jones, Doherty, PRL ‘07]



Local hidden state model

label of hidden state

/ \
{p(N), 67 (N)}
probability j A\

distribution on hidden state
hidden states

v~ UnSteerable (assemblage)

B LUS
a,|x Zp CL‘:U >‘ ( )

= 3" D(ala, \p'(\)&' (M)
dé:t. A\ deterministic

Strate p N
[Wiseman, Jones, Doherty, PRL 107] gy



Not unsteerable = steerable

A bipartite state is steerable if it can generate
steerable assemblages via local measurements;
otherwise unsteerable



All unentangled states are unsteerable, and all
unsteerable assemblages can be seen as originating
from some unentangled state:

steering entanglement

Also some entangled states are unsteerable!!!

steering / entanglement

[Wiseman, Jones, Doherty, PRL ‘07]



A hierarchy for
bipartite correlations



A hierarchy for
bipartite correlations



A hierarchy for
bipartite correlations
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A hierarchy for
bipartite correlations



The border we characterize
operationally






In order to have

Peorr” ({Aa}, paB) > Peor({Aa})

it must be that {Mé?m}b,x creates steerable assemblage

(otherwise some separable state would have performed
as well, and no better than w/o correlations)



Only steerable states can be useful under the one-way
LOCC assumption for measurements
[ also entangled states are useless, if unsteerable!!! ]

We prove that all steerable states do stay useful!!!



If the state is steerable, consider any choice of {Mg]‘x}b,x

that generates a steerable assemblage {,ofm}aja3

The robustenss of steering of such an assemblage is:

R({pa|x})

a|x —l_ t T(l xXr
= min<t >0 {p | | } unsteerable,
1 + t a,x

{Ta|z} an assemblage}



all assemidlages

unsteerable
assemblages
(compatible with

unentangled state)



all assemidlages

unsteerable

assemblages
(compatinle with
unentangledisiate)




We define the steering robustness of the state as

Riel (pap) = sup  R({pF }az)
{M(;qlx}a,w
We prove

B—A
sup Pcorr ({AG}CLMOAB) _RA—>B(IOAB) 41

{Aata pg)]?r({Aa}a) |




The direction

B—A

Pecorr ({AQ}CLMOAB) A—B
SUp Rs eer ( AB) + 1
{As}a pcorr({A } ) ‘

is easily proven just by making use of definitions.

That the upper bound can be achieved is proven by
constructing suitable subchannel discrimination problems



Finding R({pq|s}) corresponds to a semidefinite
programming (SDP) optimization problem (whose dual is)

maximize ZTT(Fa|m,0a|m) — 1

subject to E:D(CL\:L‘,)\)FCLMj <1 VA
Foz >0 Va,r
D(a|x,\) : deterministic response

A\ : identifier of deterministic response



Entanglement
witness

separable
SEENES



Steering N
witness

unsteerable
assemblages
(compatible with

unentangled state)



Using the information provided by the SDP optimization
problem we construct suitable subchannels {A,},

 Choose them to be quantum-to-classical

Aq [T]}X > Tr(Foper)|z) (2

use normalization to \ \

make them subchannels from the SDP orthonormal

of an instrument

* Take care of trace preservation by introducing suitable
“dummy” subchannels



Having used the F, s that give R({p,.}) , with
our construction we find

p(iZA({Aa}aapAB) > R({pa|a}}) + 1

NE — 2
pcorr({Aa}a) 1 =+ aN
normalization -/ k number of
factor dummy
(independent of N) subchannels

(arbitrary)

Considering /N — oo we prove the claim. ‘'



REMARK

Our SDP approach was also inspired by
[Skrzypczyk, Navascués, and Cavalcanti, PRL "14]

In their case they use semidefinite programming to
compute the so-called steering weight



Steering robustness

all assemidlages

alz }

unsteerable

assemblages
(compatinle with
unentangledisiate)




Steering weight

{pa|$

2l assemislages

1 @0a|w @a|x}

unsteerable
assemblages
(compatible with
unentangled state)




Conclusions

“All entangled states are special [...]”

All entangled states are useful for (sub)channel
discrimination

“[...] but some are more special than others”

Only steerable states can be, and are useful for
subchannel discimination under the constraint that
the measurements are one-way LOCC



Conclusions

We have introduced the robustness of steering:
* it has at least two operational interpretations:
* resilience (of steering) to noise
= advantage in subchannel discrimination
 computable via SDP for a given assemblage

* it provides semi-device-independent bounds
to the robustness of entanglement [vidal and Tarrach, PRA ’99]

* it scales with the amount of entanglement

* it respects sensible criteria to be considered a resource
quantiﬁer [Gallego and Aolita, arXiv:1409.5804]



Some open questions

Closed formula for the robustness of steering for pure
states/maximally entangled states

Can steering be characterized by considering channel
discrimination, rather than subchannel discimination?

Are all entangled states useful for (sub)channel
discrimination under general LOCC (Vs one-way LOCC)?

Can we also characterize non-locality --- besides
entanglement and steering --- via (sub)channel
discrimination tasks?
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